ОЧИСТКА ВОДЫ ОТ ИОНОВ МАРГАНЦА И ЖЕЛЕЗА*

Чинар Ходжамухаммедова,

Туркменский Государственный архитектурно-строительный институт, старший преподаватель

Ходжанепес Евжанов,

Международный университет нефти и газа имени Ягшыгелди Какаева, профессор, доктор технических наук

Аннотация

В настоящее время при опреснении соленых вод Туркменистана широко применяются самые современные методы мембранного обратного осмоса и электродиализа. Для эффективного использования этих методов необходимо предварительно очистить соленую воду от некоторых веществ. В частности, ионы железа и марганца в воде, механически диспергированные частицы образуют труднорастворимые отложения на мембранах и ее клетках. Таким образом, вода должна быть тщательно очищена от этих ионов перед подачей в мембранные установки. С экономической точки зрении использование местных природных минеральных ресурсов являются более выгодно. Исходя из этого, в данной научной работе изучена возможность использования доломитов местного природного рудника Келете в качестве сорбента для очистки вод от ионов марганца и железа.

Ключевые слова: доломит, вода, марганец, железо, очистка, природный сорбент, сорбция.

Койтендагский регион Туркменистана богат химическим сырьем, природными солями, строительными материалами, декоративными камнями, рудами редких металлов и другими ресурсами. Наличие огромных запасов калийных солей, целестина, поваренной соли, гипса, доломита, известняка и других полезных ископаемых в будущем открывает широкие возможности для их промышленного освоения.

В данном научном работе изучалась возможность использования минерала доломита $(CaCO_3 \cdot MgCO_3)$ из рудника Келете в этрапе Бахарденском в качестве коагулянта. При нагревании до 850-900°C доломит разлагается следующим образом:

$$CaCO_3 \cdot MgCO_3 \rightarrow CaO \cdot MgO + 2CO_2$$

При 500° С MgCO₃ в доломите начинает разлагаться и полностью разлагается при 692° С. А эндотермический эффект при 918° С означает, что в доломите CaCO₃ полностью растворяется. По результатам химического анализа минеральность доломита составляет 92,64%, он содержит 50,20% CaCO₃ и 42,44% MgCO₃. Остальное: 0,65% гипса, 3,56% кальцита и 3,5% нерастворимых остатков (силикатов и др.). Полученные смешанные оксиды CaO·MgO реагируют с водой с образованием раствора магнезиальной извести.

$$CaO \cdot MgO + 2H_2O \rightarrow Ca(OH)_2 + Mg(OH)_3$$

При обработке воды таким раствором происходят не только явления коагуляции, но и выпадение в осадок карбонатов кальция и магния, сульфатов, фторидов, силикатов, гидроксидов и некоторых малорастворимых органических соединений. Вместе с этими образовавшимися осадками выделяются ионы некоторых тяжелых металлов – железа, марганца и других.

_

^{*} Ходжамухаммедова Ч. e-mail: hojamuhammedovachynar@gmail.com

Исследования по очистке воды от марганца и железа проведены на модельных и естественных природных водах. Этот метод удаления марганца и железа из воды применяется для хозяйственно-питьевых вод, преимущественно природных (подземных, поверхностных) и техногенных вод. Способ очистки воды от этих элементов заключается в обработке ее обычным и модифицированным доломитом.

Как известно, в связи с ростом спроса на чистую питьевую воду, многие страны применяют метод опреснения соленой воды, в частности, для опреснения соленой воды Туркменского озера Алтын-Асыр. В связи с экономичностью широкое применение находят мембранные методы – обратный осмос и электродиализ.

Основное преимущество опреснения обратным осмосом перед другими методами заключается в том, что оно не требует больших энергозатрат и энергопотребление близко к термодинамическому минимуму. Поэтому эти методы сейчас получают широкое применение для опреснения коллекторно-дренажных и других соленых вод (Евжанов, 2009).

Однако, при опреснении воды мембранными методами особую опасность представляют примеси ионов марганца и железа. Предельно допустимые концентрации их в опресняемой, а также в питьевой воде не должны превышать 0,1-0,2 мг/л. Это вызвано тем, что осаждаясь на поверхности и внутри мембран, гидроксиды железа и марганца увеличивают сопротивление мембран, и в результате снижается производительность опреснительных аппаратов. Поэтому в питьевом водоснабжении и при опреснении соленых вод мембранными методами возникает необходимость очистки вод от марганца и железа до требуемых норм (Николадзе, 1987).

В воде марганец и железо находятся в виде Mn²⁺ и Fe³⁺. В настоящее время для очистки вод от марганца применяют в основном метод окисления при рН>9,5. В качестве окислителя применяют в большинстве случаев хлор, перманганат калия, озон и др. Применяются также различные природные и синтетические сорбенты. По очистке вод от железа существуют различные способы. Они подразделяются на две группы: реагентные и безреагентные (физические). К реагентным относятся аэрация, окисление, флотация, известкование, коагуляция и др. К безреагентным способам относятся электрокоагуляция, фильтрование, аэрация и др. Однако эти методы являются дорогостоящими из-за применения химических реактивов и физических оборудований. Поэтому с экономической точки зрения наиболее предпочтительным является использование недорогих природных сорбентов. Исходя из этого мы разработали способ очистки воды с использованием местных доломитов. (Евжанов, Ходжамухаммедова, Сапаров, 2016).

В процессе очистки воды от ионов марганца и железа используются недорогие природные материалы, но вначале необходимо обеспечить очистку минерализованных и грунтовых вод путем опреснения мембранным методом.

Для исследования были использованы воды Келеджарского водохранилища Геокдепинского этрапа Ахалского велаята. Количество железа в исходной воде составляет 10 мг/л. К 200 мл воды добавляли различное количество первичного доломита. По истечении указанного времени суспензию фильтровали и определяли количество железа, оставшегося в отфильтрованной воде.

В этих условиях сорбция железа осуществлялась в зависимости от фракционного состава доломита и исходной концентрации железа. Во всех экспериментах после обработки в воде железа не обнаружено. В таблице 1 представлены результаты, полученные после деминерализации сточных вод.

Таблица 1

Результаты очистки воды от железа природным доломитом

Содержание	Объем	Количество	Сост	ав очиц	Степень очистки		
Fe ³⁺ в воде,	воды, мл	добавленного		M	воды от Fe3+, %		
мг/л		доломита, г		Ca ²⁺	Mg^{2+}	pН	
10,0	200	0,5	0,403	71,4	135,6	7,38	95,9
	200	2,0	0,170	47,6	171,3	7,87	98,3
	200	4,0	0,142	71,4	171,3	7,83	98,6
	200	6,0	0,089	59,5	121,4	8,36	99,1

Как видно из этих данных, степень обезжелезивания достигает 99,1%, а количество ионов $\mathrm{Fe^{3+}}$ в очищенной воде составляет 0,09 мг/л, что соответствует требованиям мембранных методов обессоливания.

При очистке дренажной воды от Mn^{2+} и содержание его в очищаемой воде составляло 21,0 мг/л. Первоначально для очистки был использован необоженный доломит. Однако при этом степень очистки даже при дозе доломита 8,0 г/200 мл воды составила 5,5%. Поэтому в дальнейших опытах был использован полуобоженный при 650°C доломит. Остальные условия аналогичны предыдущим. Результаты опытов приведены в таблице 2.

Результаты совместной обработки марганца и железа с полуобожженным доломитом представлены в таблице 3.

Таблица 2 Результаты очистки воды от марганца полуобоженным доломитом

Содержание Мп ²⁺ в воде	Объем воды,	Количество добавленного	Состав очищенной воды, мг/л				Степень очистки воды	Примечание
мг/л	МЛ	доломита, г	Mn ²⁺	Ca ²⁺	Mg^{2+}	pН	от Mn ²⁺ , %	
	200	0,5	18,20	66,6	179,8	7,54	13,3	
	200	2,0	10,5	99,4	173,1	7,85	50,0	
	200	4,0	3,22	55,5	179,8	7,73	84,6	
	200	6,0	1,76	55,5	179,8	8,19	91,6	
	200	8,0	1,41	44,4	173,1	8,30	99,6	
	200	8,*0	19,84	117,3	144,0	7,42	5,5	Необоженный
								доломит

Таблица 3

Результаты совместной очистки от марганца и железа дренажной воды полуобоженным доломитом

Объем воды – 200 мл, количество полуобоженного доломита – 8 г.

Название пробы воды	Химический состав воды, мг/л						Степень очистки от ионов, %				
Дренажная вода коллектора	HCO ₃	Cl	SO_4^{2-}	Ca ²⁺	Mg^{2+}	Na ⁺	Mn ²⁺	Fe ³⁺	Сумма солей	Mn ²⁺	Fe ³⁺
Джар, Марыйского велаята	427,0	1686,25	2880,1	180,2	120,5	2196,7	21,0	10,0	7521,7	99,5	99,1

Также были проведены опыты в динамических условиях следующим образом. В колонку диаметром 25 мм и высотой 80 см загружали 475 г природного доломита фракции 1,00-2,50 мм и пропускали дренажную воду с содержанием железа 10 мг/л. Скорость переливания составила 3 мл/мин. Аналогичные опыты были проведены также по очистке воды от марганца. Содержание марганца в очищаемой воде составляло 5 и 10 мг/л. В качестве фильтрующей загрузки был использован (10 г) полуобоженный доломит. Результаты опытов приведены в таблице 4.

Таблица 4 Результаты динамических опытов по очистке воды от марганца полуобоженным доломитом

Исходное содержание Mn ²⁺ , мг/л	Пропущено дренажной воды, мл	Остаточное содержание Mn ²⁺ , мг/л	Степень очистки воды от Mn ²⁺ , %
5,0	100-600	0	100,0
5,0	700	0,75	85,0
5,0	1000	1,0	80,0
5,0	1500	2,4	52,0
5,0	2000	3,9	22,0
5,0	2500	4,6	8,0
10,0	100-400	0,0	100,0
10,0	500	0,46	96,0
10,0	1400	2,78	73,0
10,0	2100	4,9	51,0
10,0	2800	7,2	28,0
10,0	3500	9,7	3,0

Из этих данных видно, что при переливании воды до 400-600 мл марганец из воды полностью очищается.

выводы

Разработан эффективный метод очистки воды от ионов марганца и железа с использованием природного и модифицированного местного доломита. Обнаружена возможность использования необоженного доломита при очистке воды от ионов железа, а полуобоженного доломита — от ионов марганца.

Метод может быть использован в условиях Туркменистана для удаления ионов марганца и железа, мешающих опреснению дренажной воды мембранными методами.

ЛИТЕРАТУРА

- 1. Евжанов Х. Очистка и повторное использование коллекторно-дренажной воды // Химия и водная технология, 2009, Том 31, № 1.
- 2. Евжанов X., Ходжамухаммедова Ч., Сапаров X. Способ очистки вод от марганца и железа, Патент Туркменистана №690, CO2F 1/28, 2016.
 - 3. Николадзе Г.И. Технология очистки природных вод, М, 1987 г.